Comparison of Volatile Components in Dried Scallops (*Chlamys farreri* and *Patinopecten yessoensis***)** Prepared by Boiling and Steaming Methods

Hau Yin Chung,*,† Ivan Ka Shing Yung,‡ and Joo-Shin Kim§

Department of Biology, Food and Nutritional Sciences Program, and Food Science Laboratory, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; and Pulmuone Company Ltd., Pulmuone Research and Development Center, Seodaemum, P.O. Box 146, Seodaemun-Ku, Seoul, Korea 120-600

Comparison of two types of dried scallops, *Chlamys farreri* and *Patinopecten yessoensis*, and effects of preparation methods (boiling and steaming) on the composition of their volatile components were carried out by simultaneous steam distillation and extraction and with analysis by gas chromatography—mass spectrometry. One hundred and seventy-two compounds were identified, three tentatively. Qualitatively, both scallops had similar components. Quantitatively, *C. farreri* contained more components with higher levels in aldehydes, alkanes, naphthalenes, esters, furans, miscelaneous compounds, alcohols, and ketones, whereas *P. yessoensis* had more components with higher levels in aromatics, pyrazines, pyridines, sulfur-containing compounds, and terpenes from both boiling and steaming methods. Comparison between methods for the same scallop showed that similar qualities of components were detected. Overall, more compounds with higher levels were detected from the boiling method.

Keywords: Scallops; volatiles; preparation; comparison; GC-MS analysis

INTRODUCTION

Thirty-three species of scallops are commercially or potentially important worldwide (1). In China, 21 species of scallop are found (2), of which 19 are native and the other 2 are exotic. For cultivation, four major species are raised, including two native species (Chlamys farreri and Chlamys nobilis) and two exotic species (Patinopecten yessoensis and Argopecten irradians). The majority of the scallops are sold in dried form. The remainder is sold fresh or processed into canned products (2). Similarly, in Japan, several species of scallops are cultivated, including P. vessoensis, Pecten albicans, Chlamys senatoria nobilis, Chlamys swiftii, C. farreri, and *Amusium japonicum* (3). Scallops in Japan are sold fresh or processed into frozen, dried, canned, or boiled forms. In Hong Kong, the consumption of dried scallops is very popular and the major species sold are C. farreri from China and P. yessoensis from Japan. Their relative prices vary greatly.

The adductor muscle, consisting of both striated and smooth muscles, is the major edible part of these animals. As a food ingredient, the dried muscle is first soaked in water until it is softened before other thermal treatments such as boiling or steaming are carried out. Boiling is usually used in the preparation of the stewed clear or the all-season soups (4, 5). The former type is

§ Pulmone Co. Ltd.

prepared by cooking foods in a covered container kept inside a larger cooking pot, half filled with boiling water for ~ 3 h (4, 6). The latter type is prepared by simply simmering foods in a pot of boiled water for 2 h (5, 6). On the other hand, steaming of dried scallops may take 2-3 h depending on the amount used (7). In the past, the quality of scallop muscle has been assessed on the nonvolatile components present; little attention has been given to the volatile components (8-10). Suzuki et al. (11) identified 84 components in the boiled adductor muscle of frozen scallops, P. yessoensis. Whereas trimethylamine dominated in the boiled scallops, dimethyl sulfide was the major compound identified in fresh, raw scallops. No volatile components that contributed to the flavor of the popular dried adductor muscle were reported. The objectives of our research are to compare the volatile components between the two species of dried scallops and to compare the effects of boiling and steaming methods on the samples.

MATERIALS AND METHODS

Materials. Two types of dried scallops, *C. farreri* (sample C) and *P. yessoensis* of LL grade (sample J) were purchased from a retailer in Hong Kong in 1998. Samples were kept in sealed glass containers at room temperature (22 °C). Chemical standards were purchased from Aldrich Chemical Co., Inc. (Milwaukee, WI) except for 3-octen-2-one, which was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan).

Simultaneous Steam Distillation and Solvent Extraction (SDE) of Volatile Components by Boiling of Samples. Forty-five grams of dried scallop was blended by a domestic blender [National Blender, model MX-T2GN; Matsushita Electric (Taiwan) Co., Ltd., Taipei, Taiwan] and was mixed with boiled double-distilled water [1:11 (w/v)] in a 5-L roundbottom flask. One milliliter of 2,4,6-trimethylpyridine, 9.0783 μ g/mL, was added to the sample as an internal standard. Fifty

^{*} Author to whom correspondence should be addressed [telephone (852) 2609 6149; fax (852) 2603 5745; e-mail anthonychung@cuhk.edu.hk].

 $^{^\}dagger$ Department of Biology, Food and Nutritional Sciences Program, The Chinese University of Hong Kong.

[‡] Department of Biology, The Chinese University of Hong Kong.

Figure 1. A setup of the sample flask and sample for simultaneous steam distillation and solvent extraction (SDE) in the steaming method.

milliliters of distilled dichloromethane was used as solvent. Each sample was extracted for 2 h by boiling it in a Likens and Nickerson (12) type SDE apparatus (catalog no. K-523010-0000, Kontes, Vineland, NJ). Four replicated extractions of each sample were carried out. Extracts were concentrated by a stream of ultrahigh purity (99.999%) nitrogen, dried over 5.5 g of anhydrous sodium sulfate, and the concentrates were stored in 15-mL conical tubes sealed with a Telfon-lined screw cap and stored at -80 °C. Before sample injection, extracts were further concentrated to 0.75 mL.

SDE of Volatile Components by Steaming of Samples. An extraction procedure similar to that used for boiling was used for the steaming of samples, but with some modifications in the setup. The blended sample (45 g) was transferred to a stainless steel gauze pouch of U.S. sieve number 70 (size = 6 $cm \times 16 cm \times 2 cm$). The pouch was then loaded on a platform formed by three 20 cm long stainless spatulas, which were arranged in a cross position, overlapping each other in a 5-L round-bottom flask as shown in Figure 1. One milliliter of 2,4,6-trimethylpyridine, 9.0783 μ g/mL, was again added evenly to the sample as an internal standard. Fifty milliliters of distilled dichloromethane was used as solvent. Each sample was extracted for 2 h in a Likens and Nickerson (12) type SDE apparatus (catalog no. K-523010-0000, Kontes, Vineland, NJ). Four replicated extractions of each sample were carried out. Concentration and storage of extracts were the same as previously described.

Gas Chromatography—Mass Spectrometry (GC-MS). A system consisting of an HP 6890 GC coupled with an HP 5973 mass selective detector (MSD) (Hewlett-Packard Co., Palo Alto, CA) was used for both qualitative and quantitative analyses. Five microliters of each extract was injected, in split mode (1:10) with injector temperature at 200 °C, into a fused silica open tubular column (Suplecowax 10, 60 m length \times 0.25 mm i.d. \times 0.25 μ m film thickness; Supelco, Inc., Bellefonte, PA). Helium gas (ultrahigh purity grade, 99.999%) was used as the carrier gas at a constant linear velocity of 30 cm/s. Oven temperature was programmed from 35 to 195 °C at a ramp rate of 2 °C/min. The initial and final hold times were 5 and 90 min, respectively. The MS interface temperature was set at 250 °C, the ion source temperature was 230 °C, the MS quadrupole temperature was 106 °C, and the ionization voltage was 70 eV. The mass range of MS was set at 33–550 amu, the scan rate was 2.94 scans/s, and the electron multiplier voltage was 1494 V.

Compound Identification and Quantification. Identification and quantification were conducted following the procedures of Chung (13, 14). Tentative identification of compounds was made by matching the mass spectra of unknowns with those in the Wiley Chemical Database (6th ed., Hewlett-Packard Co., Palo Alto, CA). Positive identifications were based on the comparison between the mass spectra and retention times or retention indices (RI) of unknown compounds in the extracts with the authentic standards under the same experimental conditions (15). An internal standard curve was developed for each compound and used to quantify each component. Relative abundance of a tentatively identified compound was estimated from the ratio of the relative area of a specific fragment of the tentatively identified compound to that of internal standard (2,4,6-trimethylpyridine, m/z 121).

Proximate Analysis. Moisture, protein, fat, and ash analyses were carried out according to the AOAC official methods (*16*).

Statistical Analysis. Compounds from four replicate samples were analyzed by one-way analysis of variance (ANOVA) and compared by the Tukey HSD at p < 0.05 level of significance (17).

RESULTS AND DISCUSSION

Table 1 shows the results of proximate analyses from both dried *C. farreri* (C) and *P. yessoensis* (J). Scallop C was much higher in the content of moisture, ash, and fat when compared with scallop J. On the other hand, sample J was higher in protein and carbohydrate. Recalculation of the samples on a dry weight basis gave mean percentages of ash, protein, fat, and carbohydrate of 13.2, 59.5, 1.7, and 25.6 for scallop C and 9.8, 59.7, 0.9, and 29.6 for scallop J, respectively. The percentages of crude protein of these samples were similar.

Table 2 shows the volatile components found in both scallops prepared by either boiling or steaming methods. One hundred and seventy-two compounds were identified (three tentatively) from the combined data. Among them, ketones (32) and aldehydes (25) were the major classes. Other compound classes included aromatics (18), alcohols (15), phenolic compounds (15), miscellaneous compounds (12), naphthalenes (10), sulfur-containing compounds (10), terpenes (8), pyrazines (7), esters (6), alkanes (5), pyridines (4), furans (4), and an acid (1).

Comparison between Scallops *C. farreri* (C) and *P. yessoensis* (J). Qualitatively, both scallops generally contain similar components in almost all classes of compounds in each preparation method, but 22 compounds occurred in only either one or the other of the

Table 1. Proximate	Analyses	(Percentage	by Wet	and Dry	Weights)	of Dried Scal	llops, <i>C.</i>	farreri and P.	vessoensis ^a
	./	· .	./						/

		percentage wet (dry) weights										
sample	moisture	ash	protein	fat	carbohydrate ^b							
<i>C. farreri</i> (Chinese scallops) <i>P. yessoensis</i> (Japanese scallops, LL grade)	$\begin{array}{c} 25.2 \pm 0.6 \\ (0) \\ 13.5 \pm 0.2 \\ (0) \end{array}$	$\begin{array}{c} 9.9 \pm 0.0 \\ (13.2) \\ 8.5 \pm 0.1 \\ (9.8) \end{array}$	$\begin{array}{c} 44.5\pm0.5\\(59.5)\\51.7\pm0.7\\(59.7)\end{array}$	$\begin{array}{c} 1.3 \pm 0.0 \\ (1.7) \\ 0.7 \pm 0.0 \\ (0.9) \end{array}$	19.1 (25.6) 25.6 (29.6)							

^{*a*} Data are expressed as mean \pm standard deviation with n = 3. ^{*b*} Carbohydrate % = 100% - (moisture + ash + protein + fat)% (41).

							<i>C. farreri</i> scallop C		P. yessoens		sis scallop J			
		boiling steam		ning	boil	ing	stean	ning						
			CAS Registry				concn ^h	SD ⁱ	concn ^h	SD ⁱ	concn ^h	SD ⁱ	concn ^h	SD ⁱ
no. ^a	\mathbf{compd}^{b}	\mathbf{ref}^{c}	No. ^d	$\mathbb{R}\mathbf{I}^{e}$	m/z^{f}	sig ^g	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
	acid (1)													
1	tetradecanoic acid	1	544-63-8	2694	129	**	137ª	34	15.8 ^b	1.3	60.3 ^c	20.5	20.0 ^{bc}	6.3
	aldehydes (25)													
2	pentanal	1	110-62-3	1000>	58	**	901 ^a	27	587 ^a	74	2150 ^b	311	1470 ^c	56
3	2-butenal/	1	4170-30-3	1042	70	**	10.3 ^a	0.4	5.55 ⁰	0.44	13.0 ^c	1.9	6.35 ⁰	0.99
4	$(F)_2$ -methyl_2-butenal	1	00-25-1 497-03-0	1000	72 84	**	371- 80 8a	20 5.6	403° 80 3a	40 8 1	400° 28 6 ^b	45 36	32.3° 33.9b	20
6	(E)-2-pentenal		1576-87-0	1132	69	**	379 ^a	14	142 ^b	12	20.0 191°	21	78.2 ^d	17.3
7	2-methyl-2-pentenal		623-36-9	1151	98	**	10.2 ^a	0.3	10.1 ^a	0.8	6.17 ^b	0.85	8.35 ^c	0.75
8	2-methylene-hexanal		1070-66-2	1160	97	**	808 ^a	47	504 ^b	23	35.2 ^c	3.2	64.9 ^c	19.6
9	heptanal	1	111-71-7	1189	70	**	198 ^a	10	130 ^b	15	244 ^c	17	155 ^b	7
10	3-methyl-2-butenal		107-86-8	1202	84	**	5.36 ^a	0.45	5.29 ^a	0.86	10.4 ^b	1.3	5.61 ^a	0.81
11	(E)-2-hexenal (Z) A horizonal		6728-26-3	1221	83	**	195ª 256a	11	61.6 ⁰	2.7	88.0 ⁰	57.7	40.1 ⁵	2.3
12	(Z)-4-heptenal		0728-31-0 124-13-0	1247	84 100	**	200° 261a	22 24	158 ⁵ 157 ^b	10 22	97.2° 298a	0.7 25	75.3° 204 ^b	5.0 17
14	nonanal	1	124-19-6	1398	98	**	28.9 ^a	2.7	23.0 ^a	6.6	200 44.6 ^b	4.6	21.0 ^a	1.5
15	2-furancarboxaldehyde		98-01-1	1471	96	**	33.9 ^{ab}	11.2	42.2 ^a	6.8	21.6 ^b	0.7	19.3 ^b	7.6
16	(E,E)-2,4-heptadienal	1	4313-03-5	1498	81	**	32.7^{a}	5.1	18.8 ^b	1.4	27.2^{a}	3.2	13.3 ^b	1.6
17	decanal	1	112-31-2	1503	57	**	21.1 ^{ab}	2.3	17.7 ^b	2.7	27.9 ^a	3.4	18.8 ^b	4.8
18	benzaldehyde	1	100-52-7	1530	106	**	663 ^a	20	741 ^a	54	962 ^b	59	1110 ^c	60 5 0
19	(<i>E</i> , <i>Z</i>)-2,6-nonadienal		557-48-2	1691	94	**	105ª 2 46a	10	38.5 ⁰	3.1	72.6 ^c	6.1	28.8 ⁰	5.3
20 21	5-ethyl-2-furaldehyde		23074-10-4	1645	119	**	5.40- 20 9a	0.08	3.40- 19.0 ^b	0.27	0.800° 7.07°	0.049	0.078° 6.27°	0.155
22	phenylacetaldehyde		122-78-1	1651	91	**	2.90 ^a	0.68	3.07 ^a	1.78	7.60 ^b	0.73	7.36 ^b	0.92
23	4-methylbenzaldehyde		104-87-0	1654	119		6.18 ^a	0.25	5.74 ^a	0.39	nd	nd	nd	nd
24	4-ethylbenzaldehyde		4748-78-1	1714	134	**	22.3 ^a	0.7	20.0^{b}	0.9	4.67 ^c	0.42	3.93 ^c	1.09
25	4-methoxybenzaldehyde		123-11-5	2032	135	**	nd	nd	nd	nd	10.2 ^a	4.3	5.00 ^b	0.76
26	2-naphthalenecarbox- aldehyde alkanes (5)		66-99-9	2407	156	**	11.0 ^a	0.5	5.15 ^D	0.24	nd	nd	nd	nd
27	7-oxabicyclo[4.1.0]- heptane		286-20-4	1158	83	**	88.8 ^a	11.6	71.0 ^{ab}	7.3	58.1 ^b	15.5	81.7 ^a	6.8
28	tridecane		629-50-5	1300	85		6.32	1.24	8.90	0.80	7.93	1.02	8.42	2.20
29	tetradecane		629-59-4	1399	85		25.2	33.1	19.0	3.6	6.46	0.99	10.8	2.8
30 91	pentadecane		629-62-9	1499	85 95	**	6.40 ^{ab}	0.83 nd	17.8 ^c	4.8	4.61 ^a	0.56 nd	12.5 ^{bc}	3.7
31	2,0,10,14-tetrainetityi-		1921-70-0	1009	00		na	nu	66.6°	9.4	nu	nu	10.1"	0.2
	aromatics (18)													
32	benzene	1	71-43-2	1000>	78	**	10.1 ^a	1.0	9.79 ^a	0.72	5.49 ^b	0.64	5.91 ^b	0.40
33	toluene	1	108-88-3	1041	91	**	25.4^{a}	1.8	51.7 ^b	20.4	53.4 ^b	12.4	43.5^{ab}	4.3
34	ethylbenzene		100-41-4	1129	106	**	9.04 ^a	0.90	12.3 ^{ab}	2.0	17.6 ^c	3.4	16.1 ^{bc}	1.6
35	1,4-dimethylbenzene		106-42-3	1137	106	**	4.48 ^a	0.81	5.71 ^{ab}	0.92	7.51 ^b	1.45	6.47 ^{ab}	0.45
30 37	1,3-dimethylbenzene		108-38-3	1143	100	**	14.5 ^a 15 5 ^{ab}	2.3 1.6	18.7 ^{ab}	2.2	22.3 ^b 1/1 9a	3.9	20.2 ^b	1.3
38	1-ethyl-3-methylbenzene		620-14-4	1228	105	**	3.96 ^a	0.41	4.42 ^a	0.41	7.20 ^b	0.88	6.43 ^b	0.15
39	styrene		100-42-5	1262	104	**	3.93 ^a	0.46	3.66 ^a	0.28	8.69 ^b	0.92	7.99 ^b	0.60
40	1-methyl-4-(1-methyl-		99-87-6	1274	119	**	2.62 ^a	0.09	2.24 ^a	0.24	26.4 ^b	2.5	21.4 ^c	2.2
	ethyl)benzene		05 00 0	1005	105	**	10.00	0.7	11 40	1.0	1 77 mh	1 ~	1	0.0
41	1,2,4-trimethylbenzene		95-63-6	1285	105	**	10.6ª 7 20a	0.7	11.4ª 7 90a	1.2	17.5 ^b	1.7	15.7° 0.62b	0.6
43	1 4-dichlorobenzene		106-46-7	1449	146	**	19.5 ^a	0.37	18.2ª	1.2	29.1 ^b	2.3	27 6 ^b	1.5
44	1,2-dichlorobenzene		95-50-1	1492	146	**	1.25 ^a	0.08	1.11 ^a	0.05	43.8 ^b	0.5	38.7 ^c	3.0
45	1-methoxy-4-(2-propenyl)-		140-67-0	1677	148	**	0.722 ^a	0.207	nd	nd	19.1 ^b	5.5	17.6 ^b	1.1
46	benzene 1-methoxy-4-(1-propenyl)-		4180-23-8	1834	148	**	11.8 ^a	0.9	9.50 ^a	0.25	253 ^b	122	225 ^b	73
47	1.1'-biphenvl		92-52-4	1996	154	**	74.0 ^a	1.9	52.9 ^b	3.4	4.26 ^c	0.81	3.54 ^c	0.48
48	3-methyl-1,1'-biphenyl		643-93-6	2102	168	**	18.1 ^a	0.5	9.34 ^b	0.44	1.84 ^c	0.35	1.14 ^c	0.24
49	3,3'-dimethyl-1,1'-biphenyl		612-75-9	2209	182	**	6.41 ^a	0.23	2.55^{b}	0.27	1.16 ^c	0.30	0.824 ^c	0.282
	naphthalenes (10)								_					
50	naphthalene		91-20-3	1747	128	**	390 ^a	4	349 ^b	14	112 ^c	20	97.7°	5.0
51	2-methylnaphthalene		91-57-6	1859	142	**	74.9 ^a	2.4	57.6 ^b	0.7	11.8 ^c	2.8	8.62°	0.29
32 59	1-memymaphtnalene 2-ethylnaphthalone		90-12-0 939,97 5	1094	142 156	**	აა.0ª 7 77a	0.9	24.75 170b	0.1	5.51° 1 74°	1.30	ა.94° 1 19º	0.20
53 54	2.6-dimethylnaphthalene		581-42-0	1970	156	**	36.2 ^a	1.1	20.6 ^b	0.6	5.99°	1.49	3.60 ^d	0.15
55	1,7-dimethylnaphthalene		575-37-1	2000	156	**	18.6 ^a	0.8	10.8 ^b	0.4	3.01 ^c	0.73	1.85 ^c	0.21
56	1,6-dimethylnaphthalene		575-43-9	2006	156	**	23.8 ^a	1.1	13.8 ^b	0.4	6.06 ^c	2.10	2.72^{d}	0.29
57	2,3-dimethylnaphthalene		581-40-8	2008	156	**	14.0 ^a	0.5	7.89 ^b	0.65	2.10 ^c	0.53	1.37°	0.21
58	1,2-dimethylnaphthalene		573-98-8	2072	156	**	8.21 ^a	0.52	4.65 ^b	0.10	1.23 ^c	0.35	0.730 ^c	0.159
59	z,3,5-trimethyInaphthalene		2245-38-7	2182	170	イボ	11100 ^a	404	4690 ⁰	341	1570 ^c	4/2	8020	Z14

Table 2 (Continued)

							C. farreri scallop C			P. yessoensis sc		<i>sis</i> scallop	o J	
			CAS				boil	ing	stear	ning	boil	ing	stear	ning
			CAS				concn ^h	SD ⁱ	concn ^h	SD ⁱ	concn ^h	SD ⁱ	concn ^h	SD ⁱ
no. ^a	$compd^b$	ref^{c}	No. ^d	$\mathbb{R}\mathbf{I}^{e}$	m/z^{f}	sigg	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
	estern (C)					~-8	(8.8/	(8'8'	(8-8/	(8'8/	(8-8/	(8.8/	(8.8/	(8'8/
60	esters (b) 2-athovyathyl acatata		111-15-9	1200	79	**	12 5a	0.9	11 5a	11	2 80b	0.56	2 17b	0.30
61	ethyl benzoate		93-89-0	1673	105	**	7.87 ^a	0.41	5.72 ^b	0.15	2.00 11.5 ^c	0.5	2.47 9.76 ^d	0.85
62	methyl hexadecanoate		112-39-0	2217	143		48.4 ^a	34.1	nd	nd	13.3 ^a	5.7	nd	nd
63	1,2-dimethyl phthalate		131-11-3	2303	149		nd	nd	nd	nd	0.442^{a}	0.062	1.75 ^a	1.65
64	1,2-diethyl phthalate		84-66-2	2370	149	**	5.31 ^a	0.48	4.41 ^{ab}	0.50	1.58 ^c	0.25	3.69 ^b	0.46
65	diisobutyl phthalate		84-69-5	2536	149	**	8.00 ^a	0.69	4.63 ^{ab}	3.11	2.42 ^b	0.69	2.72 ^b	1.29
	furans (4)		0000 40 0	1000			00700		ogoob	407	1000		5000	101
66	2-ethylfuran		3208-16-0	1000>	96	**	3270ª	84	2730 ^b	187	486 ^c	39	509 ^c	101
68	2-pentynuran 5 mothylfurfural		3777-09-3	1230	138		147ª 165	د 11 /	102 ⁵ 16.0	4 1	29.0° 15.3	2.0	25.2° 25.0	5.8 26.7
69	2-acetyl-5-methylfuran		1193-79-9	1620	109	**	4 20 ^a	0.39	4 24 ^a	0.29	0.909 ^b	0.081	20.0 0 940 ^b	0 509
00	miscellaneous compounds (12)	1100 70 0	1020	100		1.20	0.00	1.21	0.20	0.000	0.001	0.040	0.000
70	trimethylamine	1	75-50-3	1000>	58	**	7430 ^a	684	3230 ^b	2350	3190 ^b	1480	2440 ^b	1430
71	chloroform		67-66-3	1026	83	**	274 ^a	13	343 ^b	41	233 ^a	22	274 ^a	35
72	2,4,5-trimethyloxazole		20662-84-4	1193	111	**	2.86 ^{ab}	0.33	1.29 ^b	0.13	3.24 ^a	1.24	2.11 ^{ab}	0.39
73	dimethylaminoacetonitrile		926-64-7	1243	83	**	986 ^a	42	474 ^b	20	675 ^c	69	660 ^c	100
74	N,N-dimethylformamide		68-12-2 100 07 7	1326	13	**	195° 1972	84	129 ^{ab}	22 5 9	104 ^{ab}	21 10 1	/5.5 ⁰	25.4
76	9 <i>H</i> -fluorene		86-73-7	2337	166	**	13.7- 80.6 ^a	1.0	20.9- 36.2 ^b	5.2 2 0	J2.8° 1 78℃	0.34	1 07°	0.28
77	1 <i>H</i> -indole		120-72-9	2444	117	**	nd	nd	nd	nd	13.0 ^a	2.5	6.18 ^b	3.70
78	1-methyl-9 <i>H</i> -fluorene		1730-37-6	2475	165	**	20.2ª	0.9	7.42 ^b	0.60	nd	nd	nd	nd
79	phenanthrene		85-01-8	2673	178	**	525 ^a	27	161 ^b	12	nd	nd	nd	nd
80	anthracene		120-12-7	2676	178	**	19.4 ^a	2.3	5.71 ^b	0.57	nd	nd	nd	nd
81	9 <i>H</i> -fluoren-9-one		486-25-9	2697	180	**	40.3 ^a	2.3	15.0 ^b	0.9	nd	nd	nd	nd
00	alcohols (15)		70 00 1	1009	71	**	0.042	0.91	5 00a	0.00	aa ah	2.0	90 o h	0.0
82 83	2-methyl-1-propanol		71-36-3	1092	74 56	**	0.04 ^a 23 5a	0.31	5.90 ^a 23 0a	0.90	32.2° 32.0b	3.0 2.1	20.0° 21.3b	2.2 2.1
84	1-penten-3-ol	1	616-25-1	1161	71	**	447 ^{ab}	274	552 ^b	27	126 ^c	12	165 ^{ac}	10
85	3-methyl-1-butanol	-	123-51-3	1208	70	**	2.65 ^a	0.29	2.73 ^a	0.64	5.89 ^b	0.48	5.46 ^b	0.47
86	1-pentanol	1	71-41-0	1251	70	**	122 ^a	4	125 ^a	8	71.7 ^b	4.4	73.5 ^b	6.5
87	cyclopentanol		96-41-3	1314	86	**	42.2^{a}	1.4	46.7 ^a	4.1	8.40 ^b	0.59	9.43 ^b	0.75
88	1-hexanol		111-27-3	1354	56		26.1	1.2	27.8	1.8	28.3	2.4	26.4	2.0
89	1-octen-3-ol	1	3391-86-4	1453	85	**	131 ^a	5	131 ^a	7	32.6 ^D	1.3	44.6 ^c	6.9
9U 01	1-neptanoi 2 cycloboxon 1-ol		822.67.3	1430	83 70		103	5 9 /	1/1"	0 26	1475	0 35	140° 20.0	15
92	2-ethyl-1-hexanol		104-76-7	1491	83	**	10.8 ^a	0.3	10.8 ^a	0.7	14.0 18.2 ^b	3.3	20.0 17.3 ^b	1.2
93	1-octanol		111-87-5	1559	70	**	16.6 ^a	0.7	16.2 ^{ab}	3.0	12.7 ^{bc}	0.7	9.47 ^c	1.38
94	2-chlorocyclohexanol		1561-86-0	1658	98	**	15.7 ^a	0.8	25.1 ^b	2.2	13.5 ^a	3.4	14.2^{a}	3.2
95	2-furanmethanol		98-00-0	1665	98	**	19.4 ^a	2.9	17.4 ^a	2.1	7.28 ^b	0.36	13.7 ^{ab}	8.2
96	benzenemethanol		100-51-6	1876	108	**	14.4 ^a	1.1	12.7 ^a	1.2	15.5 ^a	0.9	19.2 ^b	2.2
07	phenolic compounds (15)		00.05.1	1007	100	**	7 902	0.10	5 C Aab	0.00	0 07ah	1.00	r 90h	1 45
97	2 6-dimethylphenol		90-05-1 576-26-1	1007	109	**	7.29ª 13.1ª	0.10	3.04 ^{ab} 30.7 ^b	0.05	0.07 ^{ab}	1.00 nd	0.20°	1.45 nd
99	2.6-bis(1.1-dimethylethyl)-		128-37-0	1919	205	**	49.1 ^a	1.0	20.3 ^b	2.9	40.7 ^c	3.0	23.5 ^b	4.6
	4-methylphenol													
100	2-methylphenol		95-48-7	2011	108	**	254 ^a	13	187 ^b	10	6.25 ^c	0.55	4.79 ^c	0.49
101	phenol		108-95-2	2014	94	**	653 ^a	16	465 ^b	24	18.6 ^c	3.6	19.6 ^c	4.1
102	2-ethylphenol		90-00-6	2079	108	**	27.9 ^a	0.9	20.0 ^p	1.2	nd	nd	nd	nd
103 104	۵, J-unitetriyiphenol 4-methylphenol		JJ-07-4 106-44-5	2080 2080	108 108	**	129° 2750a	10	90.2° 1880b	5.9 95	110 85 80	110 6 1	110 78 6°	110 9 1
104	3-methylphenol		108-39-4	2085	108	**	2730 76700a	4500	50700 ^b	95 2640	437¢	0.1 47	424 ^c	9.1 68
106	2,3-dimethylphenol		526-75-0	2155	108	**	72.6 ^a	10.4	46.1 ^b	10.2	nd	nd	nd	nd
107	4-ethylphenol		123-07-9	2182	108	**	141 ^a	7	86.1 ^b	2.8	nd	nd	nd	nd
108	3-ethylphenol		620-17-7	2189	108	**	36.3 ^a	3.0	22.3 ^b	1.2	nd	nd	nd	nd
109	3,4-dimethylphenol		95-65-8	2225	108	**	82.0 ^a	8.8	49.9 ^b	2.6	nd	nd	nd	nd
110	2,3,5-trimethylphenol		697-82-5	2228	121	**	30.2 ^a	1.6	17.3 ^D	0.9	nd	nd	nd	nd
111	2,4-DIS(1,1-dimethylethyl)-		90-70-4	2310	191		108"	12	32.30	4.2	10.70	2.0	7.24°	1.01
	ketones (32)													
112	2-propanone		67-64-1	1000>	58	**	479 ^a	61	717 ^{ab}	71	999 ^b	440	813 ^{ab}	104
113	3-buten-2-one ^j		78-94-4	1000>	70	**	2.35^{ab}	0.42	1.61 ^b	0.78	2.66 ^{ab}	0.34	3.63 ^a	1.10
114	2-pentanone		107-87-9	1000>	86	**	61.8 ^a	7.7	70.3 ^a	3.5	30.5 ^b	7.9	45.8 ^c	6.5
115	2,3-butanedione	1	431-03-8	1000>	86	**	26200 ^a	2980	15400 ^b	1690	18400 ^b	1100	10800 ^c	2350
116	1-penten-3-one		1629-58-9	1024	55	**	58.4 ^a	11.7	12.2 ^b	9.7	19.0 ^b	3.4	12.2 ^b	2.4
11/ 119	o-mexamone 2 3-mentanodione	1	J&Y-3&-& 600.14.6	1033	100	**	ራ1.0ª 352a	1.4 11	24.2ª 240b	2.2 22	13.8° 4640	2.3 15	14.2" 930b	1.9
119	2-hexanone	T	591-78-6	1083	100		12.9	2.7	13.7	0.6	10.4	2.4	9.80	1.71
120	1-methoxy-2-propanone		5878-19-3	1104	88	**	70.7 ^a	3.7	37.9 ^b	5.6	nd	nd	nd	nd
121	3-penten-2-one		625-33-2	1128	84	**	89.0 ^a	8.9	40.5 ^b	6.5	49.6 ^b	6.1	24.7 ^c	2.8

Table	2	(Continued)
-------	---	-------------

							C. farreri scallop C		P. yessoens		<i>sis</i> scallop J			
			646				boil	ing	stean	ning	boili	ing	stean	ning
			CAS				aananh	<u>s</u> Di	aananh	<u>SD</u> i	aananh	<u>s</u> Di	aananh	<u>s</u> Di
no. ^a	\mathbf{compd}^b	ref^c	No. ^d	\mathbb{RI}^{e}	m/z^{f}	sig ^g	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
	ketones (continued)													
122	2,3-hexanedione		3848-24-6	1136	114	**	27.9 ^a	2.9	19.9 ^a	1.0	74.0 ^b	5.8	49.0 ^c	5.4
123	2-heptanone		110-43-0	1185	114	**	74.2 ^a	5.9	81.4 ^a	8.3	38.8 ^b	3.5	48.7 ^b	7.6
124	3-octanone		106-68-3	1258	99	**	156 ^a	3	153 ^a	11	24.5 ^b	14.1	33.0 ^b	4.1
125	2-methyltetrahydrofuran-3-one	1	3188-00-9	1268	100	**	16.0 ^a	1.Z	15.0 ^a	1.7	27.9 ⁰	3.4	33.4	8.0
120	s-nyuroxy-z-butanone	1	515-80-0 108-94-1	1200	00 98	**	1000 ⁴ 8 36a	217 1 <i>1 1</i>	1150 ⁵ 109 ^b	50 18	1210° 56.7¢	16	//4° /7 3¢	204 54
128	1-hydroxy-2-propanone		116-09-6	1303	74	**	191 ^a	37	93 0 ^b	4 1	177 ^a	1.0	97 4 ^b	23.0
129	2-methyl-2-cyclopenten-1-one		1120-73-6	1371	67		13.7	2.9	17.7	2.0	9.24	1.24	16.7	13.8
130	2-nonanone	1	821-55-6	1393	142	**	226 ^a	10	220 ^a	11	171 ^b	3	197 ^{ab}	26
131	3-octen-2-one		1669-44-9	1411	111	**	20.4 ^a	1.2	9.36 ^b	0.32	6.32 ^c	0.72	3.56^{d}	0.52
132	2-cyclohexen-1-one		930-68-7	1437	68	**	53.5^{a}	3.7	57.8 ^a	6.9	32.9^{b}	1.3	56.1 ^a	6.8
133	2-decanone		693-54-9	1497	156	**	43.6 ^a	3.2	35.3 ^b	3.3	18.7°	1.4	19.1 ^c	4.5
134	1-(2-furanyl)ethanone		1192-62-7	1511	95	 **	25.4	7.2	29.2	7.7	17.1 07 0ab	3.7	36.6	52.8
135	2-undecanone		112-12-9	1602	03 03	4. 4.	46.4" nd	8.0 nd	33.6ª	9.3 nd	37.3 ab	8.1 17	23.9 ⁵ 10 5a	4.6
130	dihydro-2(3 <i>H</i>)furanone		96-48-0	1635	86		55 2	50 1	80 4	22.6	98.3	20.2	87.4	736
138	1-phenylethanone	1	98-86-2	1657	105	**	15.3 ^{ab}	0.5	17.5 ^a	1.5	14.1 ^b	1.4	15.4 ^{ab}	1.0
139	1-(1-methyl-1 <i>H</i> -pyrrol-2- yl)ethanone		932-16-1	1660	108		48.4	1.8	31.2	4.3	27.1	0.6	31.7	14.6
140	2-tridecanone		593-08-8	1813	58	**	23.0^{a}	1.2	9.62 ^b	1.39	21.4 ^a	1.6	13.9 ^b	3.4
141	1-phenyl-1,2-propanedione		579-07-7	1818	105	**	10.9 ^a	0.4	6.82 ^b	0.60	10.3 ^a	0.6	6.21 ^b	0.63
142	1-(1 <i>H</i> -pyrrol-2-yl)ethanone		1072-83-9	1977	109	**	340 ^a	22	247 ^b	16	296 ^{ab}	40	269 ^{ab}	51
143	1-(2-aminophenyi)ethanone		551-93-9	2222	120	4. 4.	6.90 ^{ab}	1.85	10.15	2.1	2.87	0.19	5.20 ^{ac}	0.71
144	methylnyrazine		109-08-0	1266	94	**	14 0a	46	11 8 a	15	17 Qab	17	25 3b	49
145	2.5-dimethylpyrazine		123-32-0	1321	108	**	35.7 ^a	30.3	26.4 ^a	10.1	91.9 ^b	4.3	20.0 172 ^c	13
146	2,6-dimethylpyrazine	1	108-50-9	1328	108	**	27.6 ^a	9.2	32.2ª	5.1	39.7 ^a	2.0	66.6 ^b	14.2
147	2,3-dimethylpyrazine	1	5910-89-4	1346	108		16.5	11.2	15.5	3.3	13.8	1.3	21.8	6.1
148	2-ethyl-3-methylpyrazine		15707-23-0	1403	122	**	300^{a}	203	347 ^a	71	402 ^a	25	899 ^b	225
149	2,3,5,6-tetramethylpyrazine	1	1124-11-4	1473	136	**	24.9 ^a	9.1	33.6 ^{ab}	4.8	60.6 ^b	4.6	116 ^c	23
150	2-acetylpyrazine	1	22047-25-2	1631	122	**	6.50 ^a	0.64	8.38 ^a	1.89	17.10	1.3	15.70	2.3
151	pyridines (4)	1	110.86.1	1170	70	**	262a	77	51/a	50	022a	58	1700b	604
152	2-methylpyridine	1	109-06-8	1213	66	**	5.58 ^a	0.70	7.12 ^a	0.36	59.5 ^b	5.8	97.6°	18.4
153	3-methylpyridine		108-99-6	1290	93	**	11.3 ^a	1.5	12.9 ^a	1.5	24.2^{ab}	3.4	43.4 ^b	25.1
154	3-ethylpyridine		536-78-7	1378	107		1.20	0.09	1.35	0.13	1.03	0.25	2.21	2.77
	sulfur-containing compounds (1	0)												
155	dimethyl disulfide	1	624-92-0	1077	94	**	164 ^a	43	238 ^a	45	264 ^a	57	644 ^b	187
156	2-ethylthiophene		8/2-55-9	11//	97	**	4.69 ^a	0.26	5.39 ^b	0.43	0.731 ^c	0.069	0.848 ^c	0.143
150	4,5-dimethyluniazole	1	3268 10 3	13/4	113	**	8.30 ^a	1.02	4.43°	0.40	0.91 ^{ab}	1.//	4.80° 1910	1.30
159	2-acetylthiazole	1	24295-03-2	1654	85	**	12.5 ^a	0.9	12.1 ^{ab}	1.2	7.35°	0.45	8.96 ^{bc}	2.59
160	3-(methylthio)-1-propanol		505-10-2	1720	106		nd	nd	nd	nd	18.6 ^a	1.4	19.2 ^a	2.9
161	1-(2-thienyl)ethanone		88-15-3	1782	111	**	1.58 ^a	0.25	3.41 ^b	0.24	4.92 ^c	0.46	5.54 ^c	0.97
162	N,N-dimethylthioformamide		758-16-7	1829	89	**	43.0 ^a	15.8	84.8 ^a	22.2	79.7 ^a	6.2	223 ^b	71
163	benzothiazole		95-16-9	1961	135	**	4.22 ^a	0.31	4.53 ^a	0.20	8.93 ^b	0.62	7.66 ^c	0.67
164	2-(methylthio)benzothiazole <i>terpenes (8)</i>		615-22-5	2422	181	**	nd	nd	15.4 ^a	6.5	1.14 ^b	0.33	10.0 ^a	2.5
165	α-pinene		80-56-8	1019	93	**	1.76 ^a	0.13	1.36 ^a	0.16	5.93 ^b	1.10	3.83 ^c	0.27
166	<i>I</i> -limonene		5989-54-8	1199	93	**	13.8 ^a	0.8	10.2 ^a	1.4	157 ^b	17	114 ^c	15
167	camphor		76-22-2	1518	108	**	4.05 ^a	0.29	37.1 ^b	15.4	10.4 ^a	0.5	10.9 ^a	0.6
108	$\begin{array}{c} \text{IIIIal001} \\ (E) & 6 & 10 & \text{dimothyl} & 5 & 0 \end{array}$		/ 8- / U-6 3706_70_1	1001	126	-1- T	2.1/ª nd	0.27 nd	3.36ª nd	0.31 nd	ο.δ/ ⁶ 15 1a	1.43	0.40° 13 0a	1.06
100	undecadien-2-one		188 10 8	1039	164		11u 9 77a	11u	1 Q Qh	11U	1 5 0b	6.4 0.94	1 72b	0.27
171	nerolidol		7212-44-4	2003	104	**	۵.11 ^ی nd	nd	1.00° nd	nd	1.50° 7.27 ^a	0.24	1.75 [°] 3.55 ^b	0.27
172	farnesol		4602-84-0	2352	93	**	209 ^a	15	34.6 ^b	6.5	215 ^a	38	52.6 ^b	9.0

^{*a*} Compound number in each class. ^{*b*} Compounds in order of their elution sequences. ^{*c*} Articles in which the compounds were reported in 1: (*11*). ^{*d*} Chemical Abstracts Service Registry Number (supplied by the author). ^{*e*} Retention indices calculated from the average of all replicates (*15*). ^{*f*} Specified fragment for calculation of compound amount. ^{*g*} **, concentration (ng/g) of a compound in a row is statistically significant (p < 0.05); - -, concentration (ng/g) of a compound in a row is statistically insignificant (p > 0.05). Values of the amount in the same row with different superscripts (a–d) are significantly different (Tukey, p < 0.05). ^{*h*} Mean concentration (ng/g) from four replicates; nd, not detected. ^{*i*} Standard deviation; nd, not determined. ^{*j*} Tentatively identified compound by MS database (6th edition, *Wiley Chemical Database*; Hewlett-Packard: Palo Alto, CA).

scallops analyzed. Table 2 shows that the majority of them were found to be in the miscellaneous and phenolic compound classes. These two classes have four or more components detected, whereas for other minor classes, they have two or fewer components detected in only one kind of scallop.

Table 3. Compounds Identified Only in *C. farreri* with Their Published Threshold Values and Odor Descriptors

no. <i>a</i>	compd	CAS Registry No. ^b	RI ^c	threshold value ^d (g/L)	odor descriptors ^e	occurrence ^e
23 98 102 103 106 107 108 109	4-methylbenzaldehyde 2,6-dimethylphenol 2-ethylphenol 2,5-dimethylphenol 4-ethylphenol 3-ethylphenol 3,4-dimethylphenol	104-87-0 576-26-1 90-00-6 95-87-4 526-75-0 123-07-9 620-17-7 95-65-8	1654 1917 2079 2085 2155 2182 2189 2225	$\begin{array}{c} 1.45 \times 10^{-7;1} \\ 5.89 \times 10^{-8;1} \\ 6.00 \times 10^{-4;2} \\ 3.89 \times 10^{-9;1} \end{array}$	bitter almond ² medicinal, phenolic ¹ burnt, guaiacol, indole-like ^{1,4} creosote, sweet, medicinal ¹ chemical, phenolic, stale, musty ⁴ medicinal, phenolic, pungent ^{1,4} phenolic, sheepy, medicinal ⁴ flat dry odor ⁴	fats of equine, ram, lamb, goat ⁴ frankfurters ³ swine fat ⁴ fats of ovine-wool, beef, equine, swine ⁴ fats of ovine-wool, beef, equine, swine ⁴ fats of goat, lamb, ovine-wool, equine,
80	anthracene	120-12-7	2676		weak aromatic odor ⁵	swine, cervine ⁺

^{*a*} Compound number as in Table 1. ^{*b*} Chemical Abstracts Service Registry Number (supplied by the author). ^{*c*} Linear retention index (15). ^{*d*} References on threshold values: ¹Devos et al. (42); ²Ha and Lindsay (19). ^{*e*} References: ¹Aldrich (28); ²Burdock (43); ³Chevance and Farmer (44); ⁴Ha and Lindsay (19); ⁵Montgomery and Welkom (45).

Table 4.	Compounds	Identified Only	y in <i>P.</i>	yessoensis v	with Their	Published	Threshold	Values and	Odor	Descrip	tors

no. <i>a</i>	compd	CAS Registry No. ^b	\mathbf{RI}^{c}	threshold value ^d (g/L)	odor descriptors ^e	occurrence ^e
136	1-(2-pyridinyl)ethanone	1122-62-9	1608	$1.9\times10^{1;3}$	popcorn, heavy, oily, fatty ¹	liquid sage smoke; ⁸ thermal degradation products of glucosamine ⁴
160	3-(methylthio)-1-propanol	505-10-2	1720		raw potato ⁹	Cabernet Sauvignon wine; ⁹ Merlot wine ⁹
169	(E)-6,10-dimethyl-5,9-undeca- dien-2-one	3796-70-1	1859	$6.0 \times 10^{-5;1}$	hay-like ¹⁰	Japanese green tea ¹⁰
171	nerolidol	7212-44-4	2003		rose, apple green, citrus, woody, waxy ¹	Iberian ham; ¹¹ crabmeats ⁵
25	4-methoxybenzaldehyde	123-11-5	2032	$1.9 imes 10^{-7;2}$	sweet, balsamic, floral ¹	red fermented soybean curds ⁷
63	1,2-dimethylphthalate	131-11-3	2303		slight aromatic odor ³	Iberian ham ¹¹
77	1 <i>H</i> -indole	120-72-9	2444	$1.5 imes 10^{-10; 2}$	fecal, putrid, floral when diluted ^{1,2}	crabmeat; ⁵ fermented soybean products ^{6,7}

^{*a*} Compound number as in Table 1. ^{*b*} Chemical Abstracts Service Registry Number (supplied by the author). ^{*c*} Linear retention index (15). ^{*d*} References on threshold values: ¹Buttery et al. (46); ²Devos et al. (42); ³Fors (36). ^{*e*} References: ¹Aldrich (28); ²Bauer and Garbe (47); ³Budavari (29); ⁴Chen and Ho (48); ⁵Chung (13); ⁶Chung (14); ⁷Chung (49); ⁸Guillén and Manzanos (50); ⁹Kotseridis and Baumes (51); ¹⁰Kumazawa and Masuda (52); ¹¹Ruiz et al. (53).

In scallop C, the miscellaneous compound class was dominated by four polycyclic aromatic hydrocarbons (PAHs) including 1-methyl-9*H*-fluorene, anthracene, phenanthrene, and 9*H*-fluoren-9-one, whereas the phenol class mainly consisted of eight alkylphenols including 2,6-dimethylphenol, 2-ethylphenol, 2,5-dimethylphenol, 2,3-dimethylphenol, 4-ethylphenol, 3-ethylphenol, 3,4-dimethylphenol, and 2,3,5-trimethylphenol. In addition, 4-methylbenzaldehyde, 2-naphthalenecarboxaldehyde, and 1-methoxy-2-propanone were found only in scallop C.

PAHs are considered to be contaminants, and their origins in the scallop could be the result of accumulation from either environmental or food sources (18). Most of their odor qualities are not known. Alkylphenols were reported to contribute to the characteristic speciesrelated flavor in red meats, and it has been suggested that these compounds could be derived from phenolcontaining feeds or intestinal microbial fermentation in the animals, with the latter being most likely (19). In dried scallops, both conditions might exist. Plankton and benthos algae in the ocean could serve as sources of alkylphenols when live scallops consume and accumulate them (20), whereas during handling and drying of scallops, contaminating microbes could metabolize suitable amino acid substrates to phenolic products (19). Table 3 shows selected components in this group of compounds with their published threshold values, odor descriptors, and foods in which they were reported.

Seven compounds including 4-methoxybenzaldehyde, 1,2-dimethylphthalate, 1-(2-pyridinyl)ethanone, 1H-in-

dole, *3*-(methylthio)-1-propanol, (*E*)-6,10-dimethyl-5,9undecadien-2-one, and nerolidol were found only in scallop J. Table 4 shows their reported odors, threshold values, and food items in which they were identified.

In the aldehyde class, a total of 25 compounds was found. Scallop C has more components with higher levels than those of sample J. Most *n*-aldehydes were in higher levels in scallop J, whereas most alkenals were in higher levels in scallop C. Aldehydes could be generated from lipid degradation or oxidation (*21*).

Five alkanes were identified and might be derived from lipid degradation (22, 23). Generally, higher levels were detected in scallop C. Alkanes do not contribute much to the odor of foods (24). For branched aromatic compounds, the majority of them were found with higher levels in scallop J, except for 1,2-dimethylbenzene. These compounds could be formed from thermal degradation of sugars and/or amino acids (25-27). Several environmental contaminants including all biphenyls (3), several naphthalenes (10), and some specific miscellaneous compounds (4) were detected with higher levels in scallop C. 1,1'-Biphenyl has a pleasant, pungent, green, mild, geranium, and peculiar odor (28, 29). Naphthalenes could be products from microbial degradation of plant materials or environmental contaminants (18). Three of six esters identified were phthalates and were considered to be contaminants. Dimethyl phthalate has a slight aromatic odor and is used as insect repellent, solvent, and plasticizer (29).

Four furans were detected, and most were in higher levels in scallop C. Furans could be thermally generated in the Maillard reactions or from lipid oxidation (21). Nine of 15 alcohols were at higher levels in scallop C. Alcohols might be formed from lipid degradation or oxidation (21-23). Similarly, almost all 15 phenolic compounds were dominating in scallop C. Phenolic compounds could originate from phenol-containing feeds or intestinal microbial fermentation in the animals (19). Thirty-two ketones were found comprising the major class among all classes found in the samples. The levels were generally higher in scallop C. Ketones could be formed from lipid degradation and oxidation and Maillard reaction (21).

Both pyrazines and pyridines are mostly thermally produced (*30*). In both classes, sample J had more of these components at higher levels. Ten sulfur-containing compounds were found. Very high concentrations were found in dimethyl disulfide, methional, and *N*,*N*-dimethylthioformamide compared with the components within the same class. They were in higher levels in scallop J. Sulfur-containing compounds could originate from the degradation of sulfur-containing amino acids, which further provide additional substrates for reactions to form various sulfur-containing components (*31*). Terpenes are generally found in plant materials (*32*). The presence of this class of compound in dried scallops probably suggests dietary intake by the living scallops.

Aldehydes, alkanes, naphthalenes, esters, furans, miscellaneous compounds, alcohols, phenols, and ketones dominated in scallop C, whereas aromatic compounds, pyrazines, pyridines, sulfur-containing compounds, and terpenes were predominant in scallop J. Overall, more compounds with higher levels were detected in scallop C than those in scallop J, and such observations were generally true for almost all compounds found in both methods of preparation. From these results, the flavor quality of the dried scallops could be contributed partly by the conditions of their dwelling environment and partly by the content of the diets consumed by the live animals. Some representative classes included naphthalenes and terpenes. Apparently, the environment where scallop C lived might contain an abundant source of naphthalenes, whereas the environment in which scallop J dwelled had an available source of terpenes. The detection of 1H-indole and trimethylamine might indicate a microbial contribution to the flavor quality of the final products (33, 34). Because these compounds are less likely to be found in living animals, their presence could suggest microbial effects during drying process.

In fresh, raw scallop J, Suzuki et al. (11) identified dimethyl sulfide, unsaturated alcohols, and ketones. In boiled samples, they found various thermally generated products that belonged to the classes of N- or Scontaining compounds, both saturated and unsaturated alcohols, aldehydes, ketones, and fatty acids. A large amount of trimethylamine was also identified. Eightythree components were reported for their boiled samples (11). In our investigation, many more compounds were found in dried scallops. By comparison, only 26 compounds identified in the samples of Suzuki et al. (11) were found in the present samples. Such differences in quality among various scallops are probably due to the composition of the species, the forms (e.g., raw, boiled, or dried) of the samples, and the methods used for the collection of volatile components.

During the preparation of dried scallops, drying operations such as solar drying are required to dehydrate the adductor muscle (35). In the presence of both protein and carbohydrate (Table 1), and under suitable conditions (moisture and temperature) during drying (35), Maillard reaction could take place (36). Some components that could be formed from this reaction include pyrazines, pyridines, and sulfur-containing compounds (30). In addition, lipid oxidation could be facilitated by the presence of warm temperature and open-air conditions during drying (37). Some of the components such as carbohydrates, amino acids, and lipids found in the raw and boiled scallops could be degraded into smaller components, which could interact during processing to form additional components in the final dried products (38).

Additionally, the methods used to prepare samples might have some effect on the numbers and amounts of components found. Both boiling and steaming of samples could create additional thermally generated components in terms of numbers and amounts. However, such methods are still practiced in preparing dried scallops for oriental soups and dishes (4-7). Although the extraction method (SDE) used here has an inherent weakness, such as the creation of high quantities of thermal degradation and generation products, it is one of the most efficient extraction methods in recovering volatile components (39).

Because both scallops C and J have similar qualities of components, the chemical reactions and changes that they underwent during processing and extraction should be quite similar. Therefore, major differences in the overall flavor could be due to differences in the concentration in each component, their threshold value, and the presence or absence of unique components that the other dried scallops did not have.

In Tables 3 and 4, threshold values of eight compounds among other components found only in scallops C and J, respectively, reported in the literature are shown. Their calculated odor activity values (OAV), that is, ratio of concentration to threshold value, are shown in Table 5 for the two scallops prepared by different methods (40). 1H-Indole had the highest value, followed by 3,4-dimethylphenol, 2,3-dimethylphenol, 2,5-dimethylphenol, and 4-methoxybenzaldehyde. 4-Methylphenol, 1-(2-pyridinyl)ethanone, and (E)-6,10-dimethyl-5,9-undecadien-2-one were among the lowest. For compounds that were found only in one type of scallop, the odor effects of the phenolic compounds and the odor characteristics of 1H-indole seemed to be quite significant and important in scallops C and J, respectively.

On the basis of the calculated OAVs in Table 5, the 10 most potent components in boiled scallop C from strong to weak were found in the following order: 3-methylphenol > 2,3-butanedione > (E,Z)-2,6-nonadienal > trimethylamine > 4-methylphenol > pentanal > 1-octanol > 2-methylphenol > 3,4-dimethylphenol > 2,3-pentanedione. In boiled scallop J, the order was as follows: 2,3-butanedione > (E,Z)-2,6-nonadienal > trimethylamine > 3-methylphenol > pentanal > 1*H*-indole > 1-octanal > 2,3-pentanedione > heptanal > 4-methylphenol. Although the same 10 compounds were found in the steamed method for each corresponding scallop, their orders in magnitude were different as follows: for steamed scallop C, 3-methylphenol > 2,3-butanedione > trimethylamine > (E,Z)-2,6-nonadienal > 4-methylphenol > pentanal > 2-methylphenol > octanal > 3,4dimethylphenol > 2,3-pentanedione; for steamed scallop J, 2,3-butanedione > trimethylamine > (*E*,*Z*)-2,6-nona-

Table 5. Reported Detection Thresholds and Calculated Odor Activity Values of Selected Compounds in Dried Scallops, C. farreri and P. yessoensis

					calcd OAV			
		CAS			С. 1	farreri	P. ve	ssoensis
no. ^a	compd	Registry No. ^b	\mathbf{RI}^{c}	threshold value ^d (g/L)	boiling	steaming	boiling	steaming
2	nentanal	110-62-3	1000>	$2.19 \times 10^{-8;1}$	41 19	26.8	98.3	67.2
32	benzene	71-43-2	1000>	$1.20 \times 10^{-5;1}$	0.00^{e}	0.00	0.00	0.00
66	2-ethylfuran	3208-16-0	1000>	$8.00 imes 10^{-3;3}$	0.00	0.00	0.00	0.00
70	trimethylamine	75-50-3	1000>	$5.89 imes 10^{-9;1}$	1260	549	542	414
112	2-propanone	67-64-1	1000>	$3.47 imes 10^{-5;1}$	0.01	0.02	0.03	0.02
114	2-pentanone	107-87-9	1000>	$5.50 imes 10^{-6;1}$	0.01	0.01	0.01	0.01
115	2,3-butanedione	431-03-8	1000>	$1.58 \times 10^{-8;1}$	1650	972	1160	681
165	α-pinene	80-30-8 1620 58 0	1019	$3.89 \times 10^{-4.4}$	0.00	0.00	0.00	0.00
70	chloroform	1029-56-9	1024	4.00×10^{-3} ; 2	0.00	0.00	0.00	0.00
33	toluene	108-88-3	1020	$5.89 \times 10^{-6;1}$	0.00	0.01	0.01	0.00
118	2,3-pentanedione	600-14-6	1065	$2.14 imes 10^{-8;1}$	16.51	11.2	21.7	11.2
155	dimethyl disulfide	624-92-0	1077	$2.00 imes 10^{-5;2}$	0.01	0.01	0.01	0.03
119	2-hexanone	591-78-6	1083	$7.08 imes 10^{-7;1}$	0.02	0.02	0.01	0.01
4	hexanal	66-25-1	1086	$5.75 imes 10^{-8;1}$	9.92	7.00	7.09	5.64
82	2-methyl-1-propanol	78-83-1	1092	$2.57 \times 10^{-6;1}$	0.00	0.00	0.01	0.01
121	3-penten-2-one	625-33-2	1128	$1.50 \times 10^{-0.4}$	0.06	0.03	0.03	0.02
34 6	(E) 2 poptopal	100-41-4	1129	1.29×10^{-3}	0.70	0.95	1.30	1.25
35	1 4-dimethylbenzene	106-42-3	1132	$2.30 \times 10^{-6;1}$	0.00	0.00	0.00	0.00
36	1.3-dimethylbenzene	108-38-3	1143	$1.41 \times 10^{-6;1}$	0.01	0.01	0.02	0.00
83	1-butanol	71-36-3	1144	$1.51 imes 10^{-6; 1}$	0.02	0.02	0.02	0.02
84	1-penten-3-ol	616-25-1	1161	$1.48 imes 10^{-6;1}$	0.30	0.37	0.09	0.11
151	pyridine	110-86-1	1179	$2.75 imes 10^{-7;1}$	1.32	1.87	3.35	6.17
123	2-heptanone	110-43-0	1185	$6.76 imes 10^{-7;1}$	0.11	0.12	0.06	0.07
37	1,2-dimethylbenzene	95-47-6	1187	$3.80 \times 10^{-6;1}$	0.00	0.00	0.00	0.00
9 79	neptanal	111-/1-/ 20662 84 4	1189	$2.29 \times 10^{-6.3}$	8.63	5.67	10.67	6.76
166	Limonene	20002-04-4 5989-51-8	1195	$3.00 \times 10^{-6;1}$	0.00	0.00	0.00	0.00
85	3-methyl-1-butanol	123-51-3	1208	$1.62 \times 10^{-7;1}$	0.02	0.02	0.04	0.03
152	2-methylpyridine	109-06-8	1213	$1.66 \times 10^{-7;1}$	0.03	0.04	0.36	0.59
11	(E)-2-hexenal	6728-26-3	1221	$1.32 imes 10^{-7;1}$	1.48	0.47	0.67	0.30
67	2-pentylfuran	3777-69-3	1236	$9.12 imes 10^{-8;1}$	1.61	1.12	0.32	0.28
12	(Z)-4-heptenal	6728-31-0	1247	$8.00 \times 10^{-7;4}$	0.32	0.20	0.12	0.09
86	1-pentanol	71-41-0	1251	$1.70 \times 10^{-6;1}$	0.07	0.07	0.04	0.04
124	3-octanone	106-68-3	1258	$3.24 \times 10^{-7,1}$	0.48	0.47	0.08	0.10
39 144	methylpyrazine	100-42-5	1266	$1.30 \times 10^{-1;3}$	0.00	0.00	0.00	0.00
40	1-methyl-4-(1-methylethyl)benzene	99-87-6	1274	$1.00 \times 10^{-8;1}$ $1.20 \times 10^{-8;1}$	0.22	0.19	2.19	1.78
41	1,2,4-trimethylbenzene	95-63-6	1285	$7.76 \times 10^{-7;1}$	0.01	0.01	0.02	0.02
126	3-hydroxy-2-butanone	513-86-0	1288	$8.00 imes 10^{-4;4}$	0.00	0.00	0.00	0.00
127	cyclohexanone	108-94-1	1291	$2.88 imes10^{-6;1}$	0.00	0.04	0.02	0.02
13	octanal	124-13-0	1293	$7.24 imes 10^{-9;1}$	36.0	21.7	41.1	28.1
60	2-ethoxyethyl acetate	111-15-9	1299	$1.00 \times 10^{-6;1}$	0.01	0.01	0.00	0.00
28 97	tridecane	629-50-5	1300	$1.66 \times 10^{-3, 1}$ 1.05 × 10 ^{-4; 1}	0.00	0.00	0.00	0.00
07 145	2.5. dimothylpyrazing	90-41-5 193-39-0	1314	1.93×10^{-3}	0.00	0.00	0.00	0.00
146	2.6-dimethylpyrazine	108-50-9	1328	$2.00 \times 10^{-4;3}$	0.00	0.00	0.00	0.00
147	2,3-dimethylpyrazine	5910-89-4	1346	$4.00 imes 10^{-4;3}$	0.00	0.00	0.00	0.00
88	1-hexanol	111-27-3	1354	$1.86 imes 10^{-7;1}$	0.14	0.15	0.15	0.14
157	4,5-dimethylthiazole	3581-91-7	1374	$4.70 imes 10^{-4;3}$	0.00	0.00	0.00	0.00
130	2-nonanone	821-55-6	1393	$2.29 imes 10^{-7;1}$	0.99	0.96	0.75	0.86
14	nonanal	124-19-6	1398	$1.35 \times 10^{-8;1}$	2.15	1.70	3.31	1.55
148	2-etnyl-3-metnylpyrazine	15/0/-23-0	1403	$1.30 \times 10^{-4.0}$	0.00	0.00	0.00	0.01
43 89	1.acten-3-al	3391-86-4	1445	$1.62 \times 10^{-8;1}$	8.06	8.08	2 01	2 75
90	1-heptanol	111-70-6	1456	$1.02 \times 10^{-7;1}$ $1.20 \times 10^{-7;1}$	1.36	1.42	1.22	1.22
158	methional	3268-49-3	1461	$2.00 imes 10^{-7;2}$	0.21	0.45	0.35	0.60
15	2-furancarboxaldehyde	98-01-1	1471	$3.16 imes 10^{-6;1}$	0.01	0.01	0.01	0.01
149	2,3,5,6-tetramethylpyrazine	1124-11-4	1473	$7.10 imes 10^{1;2}$	0.00	0.00	0.00	0.00
92	2-ethyl-1-hexanol	104-76-7	1491	$1.32 imes 10^{-6;1}$	0.01	0.01	0.01	0.01
44	1,2-dichlorobenzene	95-50-1	1492	$4.47 \times 10^{-7;1}$	0.00	0.00	0.10	0.09
133	2-uecanone (F E) 2.4 hortodianal	093-54-9 4212 02 F	149/	$3.23 \times 10^{-6.1}$	0.83	0.67	0.36	0.36
10	(E,E)-2,4-neptauenai decanal	4313-03-3 112-31-9	1498	1.91×10^{-9} ; 1	1.72	0.99	1.43	3.20
134	1-(2-furanyl)ethanone	1192-62-7	1511	$1.10 \times 10^{2;2}$	0.00	0.00	0.00	0.00
167	camphor	76-22-2	1518	$3.24 \times 10^{-7;1}$	0.01	0.11	0.03	0.03
75	1 <i>H</i> -pyrrole	109-97-7	1523	$4.96 imes 10^{-2;4}$	0.00	0.00	0.00	0.00
18	benzaldehyde	100-52-7	1530	$1.86 imes 10^{-7;1}$	3.56	3.98	5.17	5.96
168	linalool	78-70-6	1551	$6.00 \times 10^{-6;2}$	0.00	0.00	0.00	0.00

Table 5 (Continued)

					calcd OAV			
		CAS Registry		threshold	С. 1	farreri	P. yes	ssoensis
no . <i>a</i>	compd	No. ^b	\mathbf{RI}^{c}	value ^d (g/L)	boiling	steaming	boiling	steaming
93	1-octanol	111-87-5	1559	$3.16 imes 10^{-8;1}$	0.52	0.51	0.40	0.30
68	5-methylfurfural	620-02-0	1580	$2.00 imes 10^{-2;3}$	0.00	0.00	0.00	0.00
19	(E,Z)-2,6-nonadienal	557-48-2	1591	$7.41 imes 10^{-11;1}$	142	520	979	389
135	2-undecanone	112-12-9	1602	$1.55 imes 10^{-7;1}$	0.30	0.22	0.24	0.15
136	1-(2-pyridinyl)ethanone	1122-62-9	1608	$1.90 imes 10^{1; 3}$	\mathbf{nd}^{f}	nd	0.00	0.00
150	2-acetylpyrazine	22047-25-2	1631	$6.20 imes 10^{-5;3}$	0.00	0.00	0.00	0.00
137	dihydro-2(3 <i>H</i>)furanone	96-48-0	1635	$2.00 imes10^{2;2}$	0.00	0.00	0.00	0.00
22	phenylacetaldehyde	122-78-1	1651	$4.00 imes10^{-6;\ 2}$	0.00	0.00	0.00	0.00
159	2-acetylthiazole	24295-03-2	1654	$1.00 imes 10^{-5;3}$	0.00	0.00	0.00	0.00
138	1-phenylethanone	98-86-2	1657	$1.82 imes 10^{-6; \ 1}$	0.01	0.01	0.01	0.01
95	2-furanmethanol	98-00-0	1665	$3.00 imes10^{1;2}$	0.00	0.00	0.00	0.00
61	ethyl benzoate	93-89-0	1673	$1.74 imes 10^{-7;1}$	0.05	0.03	0.07	0.06
50	naphthalene	91-20-3	1747	$7.94 imes 10^{-8;1}$	4.91	4.40	1.41	1.23
161	1-(2-thienyl)ethanone	88-15-3	1782	$8.00 imes 10^{-8;3}$	0.02	0.04	0.06	0.07
140	2-tridecanone	593-08-8	1813	$1.82 imes 10^{2; 2}$	0.00	0.00	0.00	0.00
46	1-methoxy-4-(1-propenyl)benzene	4180-23-8	1834	$4.47 imes 10^{-8;1}$	0.26	0.21	5.66	5.03
51	2-methylnaphthalene	91-57-6	1859	$1.00 imes 10^{-5;2}$	0.01	0.01	0.00	0.00
169	(E)-6,10-dimethyl-5,9-undecadien-2-one	3796-70-1	1859	$6.00 imes 10^{-5;4}$	nd	nd	0.00	0.00
97	2-methoxyphenol	90-05-1	1867	$5.25 imes 10^{-9;1}$	1.39	1.07	1.27	1.01
96	benzenemethanol	100-51-6	1876	$5.50 imes 10^{-3; 2}$	0.00	0.00	0.00	0.00
98	2,6-dimethylphenol	576-26-1	1917	$3.89 imes 10^{-9;1}$	11.08	7.89	nd	nd
163	benzothiazole	95-16-9	1961	$4.50 imes 10^{-1;2}$	0.00	0.00	0.00	0.00
142	1-(1 <i>H</i> -pyrrol-2-yl)ethanone	1072-83-9	1977	$2.00 imes 10^{2; 2}$	0.00	0.00	0.00	0.00
100	2-methylphenol	95-48-7	2011	$7.76 imes 10^{-9;1}$	32.7	24.1	0.81	0.62
101	phenol	108-95-2	2014	$4.27 imes 10^{-7;1}$	1.53	1.09	0.04	0.05
25	4-methoxybenzaldehyde	123-11-5	2032	$1.86 imes 10^{-7; 1}$	nd	nd	0.05	0.03
103	2,5-dimethylphenol	95-87-4	2085	$1.45 imes 10^{-7;1}$	0.89	0.67	nd	nd
104	4-methylphenol	106-44-5	2089	$8.32 imes 10^{-9;1}$	331	226	10.3	9.44
105	3-methylphenol	108-39-4	2097	$3.55 imes 10^{-9;1}$	21600	14300	123	119
106	2,3-dimethylphenol	526-75-0	2155	$5.89 imes 10^{-8;1}$	1.23	0.78	nd	nd
107	4-ethylphenol	123-07-9	2182	$6.00 imes 10^{-4;5}$	0.00	0.00	nd	nd
109	3,4-dimethylphenol	95-65-8	2225	$3.89 imes 10^{-9;1}$	21.08	12.84	nd	nd
172	farnesol	4602-84-0	2352	$2.00 imes 10^{-5;4}$	0.01	0.00	0.01	0.00
164	2-(methylthio)benzothiazole	615-22-5	2422	$5.00 imes 10^{-6; \ 3}$	nd	0.00	0.00	0.00
77	1 <i>H</i> -indole	120-72-9	2444	$1.55 imes 10^{-10;1}$	nd	nd	84.0	39.9

^{*a*} Compound number as in Table 1. ^{*b*} Chemical Abstracts Service Registry Number (supplied by the author). ^{*c*} Linear retention index (15). ^{*d*} References on threshold values: ¹Devos et al. (42); ²Fazzalari (54); ³Fors (36); ⁴Leffingwell and Associates (55); ⁵Ha and Lindsay (19). ^{*e*} Value < 0.01. ^{*f*} Not detected.

dienal > 3-methylphenol > pentanal > 1H-indole > octanal > 2,3-pentanedione > 4-methylphenol > heptanal. Overall, the medicinal, aromatic, woody, and ether-like odor character (28) of 3-methylphenol dominated in strength among other compounds in scallop C for both methods. Other phenolic compounds such as 2-methylphenol (musty, phenolic aftertaste), 4-methylphenol (medicinal, heavy), and 3,4-dimethylphenol (flat dry odor) also contributed to the overall flavor in scallop C (28). Although similar compounds were found in scallop J, their magnitudes were usually lower. In scallop J, the powerful buttery flavor of 2,3-butanedione was more dominant. Also, the cucumber, violet, green, waxy-like odor of (E,Z)-2,6-nonadienal and the fishy, oily, rancid, sweaty-like odor of trimethylamine contributed to the characteristic overall flavor in scallop J in both methods (28). When only those components found in only one type of scallop and with high value of OAV were considered, 3,4-dimethylphenol and 1Hindole were again identified in scallops C and J, respectively (Table 5). These two compounds were some of the more important characteristic odor contributors to the respective dried scallops.

Comparison between Boiling and Steaming Methods. The number of the same compounds identified in different preparation methods for the same scallop is higher than that of different scallops prepared by the same method. In scallop C, four compounds, including 2,6,10,14-tetramethylpentadecane, 1-methoxy-4-(2-propenyl)benzene, methyl hexadecanoate, and 2-(methylthio)benzothiazole, were detected in only one method, whereas in scallop J, three compounds including 2,6,10,14-tetramethylpentadecane, methyl hexadecanoate, and 2-(methylthio)benzothiazole were found in only one preparation method. However, when any one method was considered, 23 compounds were found only in one or the other type of scallop. The results were reasonable because the former involved the same species but the latter dealt with different species. More variations in the identity of compounds detected were expected to be found across species than within the same species.

Quantitatively, extracts prepared by the boiling method generally had more components at higher levels than those by the steaming method. For example, 109 and 93 of 165 and 157 combined components with higher mean concentrations in scallops C and J, respectively, were detected in the boiling method. When the statistical results were considered, similar observations were found. For scallop C prepared by different methods, a total of 75 components was significantly different (p <0.05), and 68 of these compounds with higher mean values were found in the boiling method. Similarly, among 52 compounds showing significant difference in

scallop J, 33 compounds with higher mean values belonged to the boiling method.

The following classes were found to contain more than half of their components with higher mean concentration levels in the boiling than in the steaming methods in each scallop: acids, aldehydes, aromatics, naphthalenes, miscellaneous compounds, phenolic compounds, ketones, and terpenes. However, for classes such as alkanes, furans, alcohols, pyrazines, pyridines, and sulfur-containing compounds, the number of components with higher concentration levels was mainly found in the steaming method. Such distributions of common components among the classes showed that differences did exist in the boiling and steaming methods, but consistency in the distributions was observed for the two samples. On the basis of the recovery of components that were relatively stable and high-boiling such as naphthalenes and some known contaminants (e.g., phenanthrene, anthracene, and 1,1'-biphenyl), the recovery efficiency of the boiling method seemed to be higher than that of the steaming method.

The present procedures for boiling and steaming of scallops were similar to the actual cooking preparation of dried scallops for food (4-7). Instead of releasing the volatile components into the open environment during cooking, they were collected by the extraction solvent in the SDE apparatus. As discussed previously, analyses of the extracts prepared from different methods showed that data collected from the boiling method generally had mean levels of each component in the extracts higher than or similar to those from steaming. This might suggest that the kind of preparation method could greatly affect the retention of the volatile components in the cooked dried scallops ready to be consumed. From the present data, the boiling method was likely to release more volatile components than the steaming method and thus to lose more of them during food preparation when other conditions were kept constant. This further indicated that more volatile components at higher concentration levels were retained in the samples when the steaming method was used during cooking. If these volatile components contain important contributors to the overall flavor of dried scallops, steaming was more desirable than boiling because much stronger flavor would be retained in the steamed scallops. This was particularly important for those components that were heat stable and odorous such as naphthalenes and miscellaneous compounds. Other components identified might not have the same effect because they could be thermally generated during boiling or steaming. Future experiments using a model system may help to clarify the relationship between the preparation methods and levels of various components generated.

In summary, both scallops C and J had similar qualities except for a few classes of compounds. Concentration levels of common components in scallop C were higher than those in scallop J. On the basis of the calculated OAV, 8 of 10 of the most potent odorants found were identical for the two different scallops, but their orders of concentration were different. However, for the same scallop, their orders were similar in both boiling and steaming methods. Overall, the methods did not affect much the quality of the volatile components in each sample. The magnitude of the volatile components collected by the boiling method was generally higher than that by the steaming method.

These compounds were often found in classes such as acid, aldehydes, aromatics, naphthalenes, miscellaneous compounds, phenolic compounds, ketones, and terpenes.

LITERATURE CITED

- (1) Waller, T. R. Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). In Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science, 21; Shumway, S. E., Ed.; Elsevier: New York, 1991; pp 1–72.
- (2) Lou, Y. Fisheries and aquaculture-China. In Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science, 21. Shumway, S. E., Ed.; Elsevier: New York, 1991; pp 809-822.
- (3) Ito, H. Fisheries and aquaculture-Japan. Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science, 21; Shumway, S. E., Ed.; Elsevier: New York, 1991; pp 1017-1051.
- (4) Lee, N. W. In Stewed Clear Soup; Seashore Publishing: Hong Kong, 1999b; pp 56, 88.
- (5) Fung, L. C. Soups For All Seasons; Seashore Publishing: Hong Kong, 1999; pp 38, 56, 88.(6) Au-Yang, C. J. *Chopsticks Wok Miracles*; Chopsticks
- Publications: Hong Kong, 1990; pp 44-45, 94-95.
- (7) Lee, K. H. In Seafood; Union BooL Singapore, 1999; p 47 (in Chinese).
- (8) Hiltz, D. F.; Dyer, W. J. Principal acid-soluble nucleotides in adductor muscle of the scallop Placopecten magellanicus and their degradation during postmortem storage in ice. J. Fish. Res. Board Can. 1970, 1, 83–92.
- (9) Yamanaka, H. Changes in polyamines and amino acids in scallop adductor muscle during storage. J. Food Sci. **1989**, 54, 1133–1135.
- (10) Wongso, S.; Yamanaka, H. Extractive components of the adductor muscle of Japanese baking scallop and changes during refrigerated storage. J. Food Sci. 1998, 63, 772-776.
- (11) Suzuki, J.; Ichimura, N.; Itoh, T. Votatile components of boiled scallop. Food Rev. Int. 1990, 6, 537-552.
- (12) Likens, S. T.; Nickerson, G. B. Detection of certain hop oil constituents in brewing products. Am. Soc. Brew. Chem. Proc. 1964, 2, 5-13.
- (13) Chung, H. Y. Volatile components in crabmeats of Charybdis feriatus. J. Agric. Food Chem. 1999, 47, 2280-2287
- (14) Chung, H. Y. Volatile components in fermented soybean (Glycine max) curds. J. Agric. Food Chem. 1999, 47, 2690-2696.
- (15) van dan Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J. Chromatogr. 1963, 2, 463-471.
- (16) AOAC. Official Methods of Analysis, 13th ed.; Association of Official Analytical Chemists: Washington, DC, 1980.
- (17) Ott, L. Multiple comparisons. In An Introduction to Statistical Methods and Data Analysis, 3rd ed.; PWS-Kent: Boston, MA, 1988; pp 437-466.
- (18) McElroy, A. E.; Farrington, J. W.; Teal, J. M. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment; Varanasi, U., Ed.; CRC Press: Boca Raton, FL, 1989; pp 9-28.
- (19) Ha, J. K.; Lindsay, R. C. Volatile alkylphenols and thiophenol in species-related characterizing flavours of red meats. J. Food Sci. 1991, 56, 1197-1202.
- (20) Bricelj, V. M.; Shumway, S. Physiology: energy acquisition and utilization. In Scallops: Biology, Ecology and Aquaculture. Developments in Aquaculture and Fisheries Science, 21; Shumway, S. E., Ed.; Elsevier: New York, 1991; pp 305-337.

- (21) Ho, C.-T.; Chen, Q. Lipids in food flavors. In *Lipids in Food Flavor*; ACS Symposium Series 558; Ho, C.-T., Hartman, T. G., Eds.; American Chemical Society: Washington, DC, 1994; pp 2–14.
 (22) Selke, E.; Rohwedder, W. K.; Dutton, H. J. Volatile
- (22) Selke, E.; Rohwedder, W. K.; Dutton, H. J. Volatile components from tristearin heated in air. *J. Am. Oil Chem. Soc.* **1975**, *52*, 232–235.
- (23) Selke, E.; Rohwedder, W. K.; Dutton, H. J. Volatile components from triolein heated in air. J. Am. Oil Chem. Soc. 1977, 54, 62–67.
- (24) Grosch, W. Lipid degradation products and flavor. Part A. Introduction. In *Developments in Food Science 3A*; Morton, I. D., Macleod, A. J., Eds.; Elsevier Science Publishing: New York, 1982; pp 325–398.
- (25) Sugisawa, H. The thermal degradation of sugars. 2. The volatile decomposition products of glucose caramel. J. Food Sci. 1966, 31, 381–385.
- (26) Walter, R. H.; Fagerson, I. S. Volatile compounds from heated glucose. *J. Food Sci.* **1968**, *33*, 294–297.
- (27) Scanlan, R. A.; Kayser, S. G.; Libbey, L. M.; Morgan, M. E. Identification of volatile compounds from heated L-cysteine-HCl-D-glucose. *J. Agric. Food Chem.* **1973**, *21*, 673–675.
- (28) Aldrich. *Flavors and Fragrances*, Int. ed.; Sigma-Aldrich: Milwaukee, WI, 1998.
- (29) Budavari, S. *The Merck Index*, 12th ed.; Merck & Co.: Rahway, NJ, 1996.
- (30) Ho, C.-T.; Carlin, J. T. Formation and aroma characteristics of heterocyclic compounds in foods. In *Flavor Chemistry Trends and Developments*; ACS Symposium Series 388; Teranishi, R., Buttery, R. G., Shahidi, F., Eds.; American Chemical Society: Washington, DC, 1989; pp 92–104.
- (31) Morton, I. D.; Akroyd, P.; May, C. G. *Flavoring Sub-stances*; U.S. Patent 2,934,437, 1960.
- (32) Solomons, T. W. G. Naturally occurring alkenes. In *Organic Chemistry*, Wiley: New York, 1980; p 422.
- (33) Staruszkiewicz, W. F. Decomposition in foods (chemical methods). Collaborative study of the gas-liquid chromatographic determination of indole in shrimp. J. Assoc. Off. Anal. Chem. 1974, 57, 813–818.
- (34) Hebard, C. E.; Flick, G. J.; Martin, R. E. Occurrence and significance of trimethylamine oxide and its derivatives in fish and shellfish. In *Chemistry and Biochemistry of Marine Food Products*; Martin, R. E., Flick, G. E., Hebard, C. E., Ward, D. R., Eds.; AVI Publishing: Westport, CT, 1982; pp 149–304.
- (35) Lin, G. N. In *Seafood Processing*; Fuh-Wen Book: Tainan City, Taiwan, 1997; p 69 (in Chinese).
- (36) Fors, S. Sensory properties of volatile Maillard reaction products and related compounds, a literature review. In *Maillard Reaction in Food and Nutrition*; ACS Symposium Series 215; Waller, G. R., Feather, M. S., Eds.; American Chemical Society: Washington, DC, 1983; pp 185–286.
- (37) Vercellotti, J. R.; St. Angelo, A. J.; Spanier, A. M. Lipid oxidation in foods, an overview. In *Lipid Oxidation in Food*; ACS Symposium Series 500; St. Angelo, A. J., Ed.; American Chemical Society: Washington, DC, 1992; pp 1–13.
- (38) Whitfield, F. B. Volatiles from interactions of Maillard reactions and lipids. *Crit. Rev. Food Sci. Nutr.* **1992**, *31*, 1–58.

- (39) Leahy, M. M.; Reineccius, G. A. Comparison of methods for the isolation of volatile compounds from aqueous model systems. In *Analysis of Volatiles, Methods and Applications, Proceedings International Workshop*, Würzburg, Germany, Sept 28–30, 1983; Schreier, P., Ed.; de Gruyter: Berlin, Germany, 1984; pp 19–48.
- (40) Guadagni, D. G.; Buttery, R. G.; Harris, J. Odour intensities of hop oil components. J. Sci. Food Agric 1966, 17, 142–144.
- (41) Merril, A. L.; Watt, B. K. In *Energy Value of Foods–Basis and Derivations*; U.S. Department of Agriculture Handbook 74; U.S. Government Printing Office: Washington, DC, 1973; pp 2–3.
- (42) Devos, M.; Patte, F.; Rouault, J.; Laffort, P.; Van Gemert, L. J. Standardized Human Olfactory Thresholds; Oxford University Press: New York, 1990.
- (43) Burdock, G. A. Fenaroli's Handbook of Flavor Ingredients, 3rd ed.; CRC Press: Boca Raton, FL, 1994; Vol. 2.
- (44) Chevance, F. F. V.; Farmer, L. J. Identification of major volatile odor compounds in frankfurters. J. Agric. Food Chem. 1999, 47, 5151–5160.
- (45) Montgormery, J. H.; Welkom, L. M. In *Groundwater Chemicals Desk References*, Lewis Publishers: Chelsea, MI, 1990; pp 24–29.
- (46) Buttery, B. G.; Tumbaugh, J. G.; Ling, L. C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1006–1009.
- (47) Bauer, K.; Garbe, D. Common Fragrance and Flavor Materials—Preparation, Properties and Uses, VCH Publishers: Deerfield Beach, FL, 1985.
- (48) Chen, J.; Ho, C.-T. Volatile compounds formed from thermal degradation of glucosamine in a dry system. J. Agric. Food Chem. 1998, 46, 1971–1974.
- (49) Chung, H. Y. Volatile flavor components in red fermented soybean (*Glycine max*) curds. J. Agric. Food Chem. 2000, 48, 1803–1809.
- (50) Guillén, M. D.; Manzanos, M. J. Extractable components of the aerial parts of *Salvia lavandulifolia* and composition of the liquid smoke flavoring obtained from them. *J. Agric. Food Chem.* **1999**, *47*, 3016–3027.
- (51) Kotseridis, Y.; Baumes, R. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine. *J. Agric. Food Chem.* **2000**, *48*, 400–406.
- (52) Kumazawa, K.; Masuda, H. Identification of potent odorants in Japanese green tea (Sen-cha). *J. Agric. Food Chem.* **1999**, *47*, 5169–5172.
- (53) Ruiz, J.; Cava, R.; Ventanas, J.; Jensen, M. T. Headspace solid-phase microextraction for the analysis of volatiles in a meat product: dry-cured Iberian ham. *J. Agric. Food Chem.* **1998**, *46*, 4688–4694.
- (54) Fazzalari, F. A. Compilation of Odor and Taste Threshold Values Data; ASTM Data Series DS 48A.; American Society for Testing and Materials: Philadelphia, PA, 1978.
- (55) Leffingwell and Associates. In *Odor Threshold*; 1999; http://www.leffingwell.com/odorthre.htm, accessed Sept 14, 2000.

Received for review June 5, 2000. Revised manuscript received October 25, 2000. Accepted October 30, 2000.

JF000692A